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Abstract—Recent years have seen various acoustic applica-
tions on mobile devices, e.g. range finding, gesture recognition,
and device-to-device data transport, which use near-ultrasound
signals at frequencies around 18-24 kHz. Due to the fixed
low sound sample rate and hardware limitation, the highest
detectable sound frequency on commercial-off-the-shelf (COTS)
mobile devices is capped at 24 kHz, presenting a daunting
barrier that prevents high-frequency ultrasounds from benefiting
acoustic applications. To bridge this gap, we present iChemo,
a technology that enables COTS mobile devices to sense high-
frequency ultrasound signals. Specifically, we demonstrate how
to detect the power spectral density (PSD) of a high-frequency
ultrasound signal by customizing the coprime sampling algorithm
on COTS devices. Through our prototype and evaluation on
extensive mobile devices, we demonstrate that iChemo can sense
the PSD of ultrasound at frequency of 60 kHz, which is over
twice of the current sensible frequency threshold.

I. INTRODUCTION

Smart mobile devices, including smartphones, tablets and

smart watches, have become increasingly indispensable for

today’s communication and entertainment. Besides the conven-

tional applications, mobile devices have also been explored to

support more novel functions with their sensing capabilities.

One major exploration is sound sensing for other purposes

beyond voice communications, such as range finding [1],

movement tracking [2], in-door localization, and even near-

field data transport [3], [4].

A fundamental step in sound sensing is measuring the Power

Spectrum Density (PSD) of sound signals. PSD essentially

illustrates the sound’s power distribution throughout a certain

frequency band. Since sounds can be easily interfered by

the environment or even buried by ambient noises, PSD

measurement is necessary to characterize sound signals of

interest. Other analysis on the target sounds, such as extracting

the signal waveform, detecting the power changes or measur-

ing frequency shifts, are further enabled. Therefore, PSD is

fairly useful in sound sensing apps, especially those built on

amplitude or frequency modulation [2], [5].

Figure 1 gives an example of the PSD measurement, which

is done through a Fourier analysis on a 40 kHz ultrasound

signal. With ultrasounds at this frequency, commercial ultra-

sound range finders are able to reach a resolution of 1 mm.

Since higher frequency typically means better resolution and

accuracy, ultrasound has long been widely used in industry

[6], and it is generally preferred in practice. Basically, sounds

at frequencies below 18 kHz are audible to humans. When the
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Fig. 1. PSD of a 40 kHz ultrasound signal

frequency goes into the near-ultrasound band, i.e. 19-24 kHz,

the sound becomes inaudible to most people, but it is still

recordable by mobile devices. Many existing sound sensing

apps work with sound signals in this band, in order to avoid

distracting users while preserving good performance.

Unfortunately, ultrasounds at frequencies higher than 24

kHz are not yet available to existing sound sensing apps.

The main reason is that, the highest sound sampling rate

supported by most commercial-off-the-shelf (COTS) smart

mobile devices is only 44.1 kHz or 48 kHz. According to the

Nyquist-Shannon Sampling Theorem [7], they can not record

any ultrasound at a frequency over 24 kHz.

For COTS mobile devices, their built-in sound recording

system consists of two key components, i.e. a Micro Elec-

tromechanical System (MEMS) microphone and an Analog-

to-Digital Converter (ADC). They are designed for recording

audible sounds; hence the upper sample rate limit of 44.1

or 48 kHz comes. In addition, before the ADC can get

the analog signal from the MEMS microphone, there is an

Anti-Aliasing Filter (AAF) eliminating inaudible parts from

the signal. This makes the sensitivity to sounds decay even

more quickly before the sound frequency reaching 24 kHz,

the theoretical upper limit. Figure 2 illustrates the frequency

response of some popular mobile devices we have measured.

This frequency response is basically a PSD measurement,

reflecting how sensitive a mobile device can be to sounds at

different frequencies. As is shown in the figure, their frequency

response curves are far from being flat within the audible

band. Particularly, their sensitivity significantly decreases from
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Fig. 2. Frequency response of several popular mobile devices

a certain point in the near-ultrasound band, such as 18 kHz for

Google/HTC Nexus 9, and 20 kHz for Apple iPhone 6s. That

said, existing apps that are based on inaudible sounds can only

operate in a narrow near-ultrasound band, and the sharp decay

not only hinders the app effectiveness but also complicates

their implementations. In order to work with sounds in as

larger band as possible, some projects even have no choice

but to involve sounds in the audible band [8], [3], facing the

risk of bringing auditory impact on users.

Given that the optimization of audible sound recording and

cost saving is the first priority for mobile device manufac-

turers, we do not expect to see great improvement on the

physical ultrasound sensing capability, even in the long run.

However, through novel sampling and processing strategies, in

particular, coprime sampling [9] with non-linearity feature and

time-domain alignment, the theoretical and physical limits will

not prevent COTS mobile devices from estimating the PSD of

high-frequency ultrasounds, which are beyond their capacity

to fully capture.

To this end, we present iChemo 1 that pushes the limit

of ultrasound detection on COTS smart mobile devices to

a much higher level. Our contributions in this paper can be

summarized as follows:

• For the first time we enable the PSD measurement

of sparse high-frequency ultrasound signals on COTS

mobile devices, without any hardware extension. The

highest sensible frequency can be as high as 60 kHz,

which is over 2× of 24 kHz, the upper limit of

existing sound sensing apps.

• To the best of our knowledge, for the first time we

employ the coprime sampling algorithm on COTS

mobile devices to achieve reliable PSD measurement

on high-frequency ultrasounds.

• Although coprime sampling has been used on sparse

electromagnetic signals [10], it is still challenging

for practical use since multiple synchronized ADCs

are required, which is also the key limit in our ear-

lier work [11]. Yet, observing that the non-linearity

1Stands for I can hear more!

feature can result in a phantom signal of the target

sound, we reveal that it is similar to the alias signal

caused by sampling at sub-Nyquist rate. Particu-

larly, by resolving the time-domain alignment of the

phantom and alias signals, we show that coprime

sampling is feasible on a standalone COTS mobile

device, where only one built-in ADC is available.

As a proof-of-concept, we have implemented the prototype

of iChemo on two popular Android devices, the Nexus 9

tablet and the Pixel XL smartphone. We have also conducted

extensive tests on iOS devices, such as Apple iPhone 6s and

iPhone 7 plus. Through prototyping and evaluations, we show

that iChemo is readily applicable on a wide range of mobile

devices, while preserving good performances. In particular,

iChemo is able to measure the PSD of an ultrasound at 60

kHz with a mean accuracy of 96.63%. By pushing the limit

of sensing high-frequency ultrasounds, iChemo can instantly

boost the performance of sound sensing apps that are built on

PSD measurement. We also discuss the potential extension of

iChemo on phase measurement, which is another foundation

in many sound sensing apps.

II. BACKGROUND AND RELATED WORK

We focus on pushing the limit for PSD measurement,

which is a key step in a wide range of sound sensing apps.

Based on the difference of sound sources, these apps fall into

two categories: (1) sensing designated sound signals, and (2)

sensing ambient sounds. It is however worth noting that our

solution can also be extended for phase measurement, which

we will further discuss in Section VI.C.

A. Sensing Designated Sound Signals

PSD measurement, by its nature, directly reflects the power

distribution of sound signals. Therefore, one major usage of

PSD measurement is to estimate the power change of certain

sounds. For example, in an early effort [12], PSD measurement

is applied to monitor the power change of multiple sparse

sound signals, of which the power is modulated to carry data

bits. This method is also known as the Amplitude Shift Keying

(ASK). Similarly, Dolphin [3] measures the PSD of ASK-

modulated signals, and it is able to achieve higher data rate

with wider bandwidth. However, the power change of signals

may not reliably detected if the ambient noise is too strong.

Realizing this fact, authors of [13] uses the appearance and

absence of certain signals to denote data bits.

Power change is not only feasible for data transport. By

monitoring the power change in the PSD of the structure-

borne sound, which is caused by changes in the framework of

smartphones, ForcePhone [14] is able to measure the pressure

force of people’s finger touch on the screen.

Beside of being used to estimate the power change of

certain sound signals, PSD is also useful in detecting the

frequency shifts. For instance, the change in the propagation

of sounds will result in a frequency shift, which is also known

as the Doppler Shift. In AAMouse [15], a smartphone is

used to measure the PSD of sound signals sourced from two
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speakers, and detect the Doppler Shift of received sounds

to determine its relative movement with the speakers. Since

the position of speakers is known to the smartphone, it can

then easily determine its spatial motion. However, realizing

the fact that Doppler Shift may not precisely reflect the

motion of the smartphone, CAT [5] employs multiple FMCW

(Frequency Modulated Continuous Wave) signals, detecting

their frequency shift through PSD measurement. Since the

frequency of the FMCW signal naturally changes through

the time, CAT is able to precisely determine the propagation

distance of the received signal.

B. Sensing Ambient Sounds

Instead of generating and sensing dedicated sound signals,

there are also some projects measure the PSD of ambient

sound signals, using it to derive fingerprints or discover and

monitor certain patterns. For instance, EchoTag [16] utilizes

smartphones to measure the PSD of environment sounds, and

fingerprints on the PSD to distinguish between locations.

Nevertheless, sensing and fingerprinting the PSD of all am-

bient sounds is not always necessary. For example, Keystroke

Snooping [17] focuses on measuring the PSD of sounds caused

by keystroking, derives the time-difference-of-arrival (TDoA)

information to distinguish different keys, then snoops on the

key input. Similarly, DopEnc [18] profiles on the PSD of

human voices to determine if two persons are encountering

and interacting with each other. V-Sense [19] measures the

PSD and monitors on a low-frequency range to detect the

turning sound, thereby determines the steering status of the

vehicle.

All of the previous efforts, as described above, can only

measure the PSD of sounds at frequency no higher than 24

kHz, due to the limited sample rate of mobile devices. As

mentioned in [3], this limit fairly restricts the performance of

these efforts, such as the throughput of data transport.

In this paper, we focus on pushing this limit to a much

higher level, thus the performance of such sound sensing apps

can be instantly boosted. We for the first time realize coprime

sampling on mobile devices to enable PSD measurement. Also

different from BackDoor [20], which applies non-linearity

to mask audible sounds with inaudible ultrasounds, we use

this inherent feature to yield additional sample sequence for

coprime sampling, so that no hardware extension is necessary.

III. ICHEMO: FOUNDATIONS

The PSD measurement essentially requires a time-domain

sample sequence of the sound signal. Suppose that for the

target signal x(t), a sample sequence x(nT ) of length N is

acquired at a sample rate of fs. Its PSD, denoted by Sx(ω),
can be then calculated from X(ω), the corresponding Discrete

Fourier Transform (DFT) of the sample sequence:

Sx(ω) =
|X(ω)|2

Nfs
. (1)

PSD of a certain signal is reliably measurable if its sample

sequence is acquired by sampling at a rate over twice of its

original signal at 32 kHz

samples acquired at 48 kHz

alias signal at 16 kHz

Fig. 3. An example of alias-
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as a 16 kHz signal

frequency. Yet, due to the limit of sample rate, current mobile

devices are not able to correctly sample the ultrasound over 24

kHz. We refer to sampling at a rate below Nyquist threshold

as sub-Nyquist sampling.

A. Sub-Nyquist Sampling and Aliasing

Sub-Nyquist sampling will result in insufficient samples of

the original signal. Such samples appear as they are acquired

from another signal at a different frequency, which is usually

lower than half of the Nyquist threshold. This phenomenon

is called aliasing. Figure 3 illustrates a simple example that

how aliasing goes. The 32 kHz signal is sampled at a rate of

48 kHz, resulting in a sample sequence of a 16 kHz signal,

of which the phase is exactly shifted by π. Since the highest

detectable frequency is 24 kHz, which is below 32 kHz, the

original signal will appear as a 16 kHz signal that falls within

the detectable range, as illustrated in Figure 4.

Suppose that a signal at frequency fc is sampled at a rate

of fs. The frequency f(a) of the alias signal can be calculated

by the Equation (2):

fa = |nfs − fc|, n ∈ N. (2)

As such, even though we can not directly recover the

original ultrasound signal, we can still acquire a portion of its

samples, and further measure the PSD from its alias signal.

However, there is an essential drawback of this naive

method: different ultrasound signals may result in the identical

alias signal. For example, consider that two ultrasound signals,

at frequencies of 40 kHz and 56 kHz respectively, are to be

sampled at a rate of 48 kHz. In this case, both ultrasounds will

appear as an alias signal of 8 kHz in the frequency domain,

since |48−40| = |48−56| = 8. If the two signals are sampled

simultaneously, there is no way to distinguish them from the

resulting 8 kHz signal.

This drawback can be resolved if we can do the sampling at

different rates. Specifically, if there are two sample sequences

acquired at coprime rates, the two ultrasounds that appear as

the identical alias signal in one sequence, will not result in

the same alias signal in another sequence. We refer to this as

coprime sampling [10].

B. Basics of Coprime Sampling

Coprime sampling was initially presented by Vaidyanathan

et al [9] for efficient signal sampling and processing. The

key idea is to sample the original signals using samplers that
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operate on mutually coprime time intervals. With coprime

sampling the autocorrelation of sampled signals can be de-

rived, therefore it is quite useful in signal analysis such as

Direction of Arrival (DoA) estimation [21].

Formally, suppose the sampling interval is T , i.e. the sample

rate is (1/T ) Hz, and the discrete samples of the original

signal are denoted with x(n) ≡ x(nT ), n = 1, 2, . . .. Sample

sequences from two samplers, with sampling interval MT and

NT , are denoted with x1(n1) and x2(n2) respectively, where

M and N are mutually coprime 2. As such, the relationship

among them are as follows:

x1(n1) = x(Mn1),

x2(n2) = x(Nn2).
(3)

By combining the two coprime sample sequences, the

autocorrelation of the original signal can be derived, enabling

further PSD measurement.

C. PSD measurement From Coprime Sample Sequences

The classic coprime sampling algorithm is readily usable

for deriving the autocorrelation information Rxx(k) of x(t):

Rxx(k) = lim
N→∞

1

N

N
∑

n=1

x(n)x(n+ k), (4)

where k ∈ Z represents the lag for estimation. Since M and

N are coprime integers, from Euclid’s theorem, any integer k
can be derived from some integer n1 and n2, so that

k = Mn1 −Nn2. (5)

Note that any k within range 0 ≤ k ≤ MN − 1
can be obtained by some pairs of n1 and n2 within range

0 ≤ n1 ≤ 2N − 1 and 0 ≤ n2 ≤ M − 1 respectively.

Moreover, recall that k = M(n1 + Nl) − N(n2 + Ml) for

any integer l. As such, even though we can not directly obtain

the autocorrelation Rxx(k) from signal samples x(n) that are

obtained at sample rate as high as 1
T

Hz, we can still estimate

Rxx(k) from two sample sequences x1(n1) and x2(n2) that

are acquired at lower sample rates:

Rxx(k) =
1

L

L−1
∑

l=0

x1(n1 +Nl)x∗

2(n2 +Ml), (6)

where L can be arbitrary positive integer. As for the negative

lags −MN + 1 ≤ k < 0, the autocorrelation Rxx(k) can be

simply derived by taking −n1 and −n2. Furthermore, since

Rxx(k) and Rxx(−k) are not necessarily equal for arbitrary

signal sample x(n), the final estimation of autocorrelation

R̂xx(k) can be taken as the average

2In the following section these two sequences are referred to as coprime

sample sequences, and two factors M and N are referred to as coprime

factors.

x(n)

0 1 2 3 4 5 6 7 8 9 10 11 12

x(Mn
1
)

M = 3 0 1 2 3 4

x(Nn
2
)

N = 4 0 1 2 3
3T

(n
1
=1, n

2
=0)

2T

(n
1
=2, n

2
=1)

T

(n
1
=3, n

2
=2)

Fig. 5. An example of autocorrelation estimation. The value of

autocorrelation on the lag of 3T can be derived from samples

x1(1) = x(3) and x2(0) = x(0).

R̂xx(k) =
Rxx(k) +Rxx(−k)

2
, (7)

so that R̂xx(k) = R̂xx(−k). From this estimation of autocor-

relation, the PSD of signal x(t) can be derived. To this end,

denoting R̂xx(k) as R̂(k), a typical method is to form the

correlation matrix as follows [22]:















R̂(0) R̂(−1) . . . R̂(−MN + 1)

R̂(1) R̂(0) . . . R̂(−MN + 2)

...
...

. . .
...

R̂(MN − 1) R̂(MN − 2) . . . R̂(0)















. (8)

Since R̂(k) = R̂(−k), the correlation matrix shown in (8)

is basically a full-rank Toeplitz matrix.

Figure 5 shows an example of how coprime sampling

estimates the autocorrelation of the signal samples x(n) that

are supposed to be obtained at sample rate (1/T ) Hz. The two

coprime sample sequences are aligned to the same beginning

sample x(0). Therefore the two sequences also share common

samples where the equation Mn1 = Nn2 is met, such as

x(12), x(24), and so forth. But other than these common

samples, there is no overlap between two sequences, as such

these samples can be used to derive autocorrelation of the

original signal sample x(n). For example, the autocorrelation

at lag T , i.e. Rxx(1), can be calculated by setting n1 = 3
and n2 = 2, since k = Mn1 − Nn2 = 3 × 3 − 4 × 2 = 1.

For the autocorrelation at negative lag Rxx(−1), samples at

n1 = 4 + (−3) = 1 and n2 = 3 + (−2) = 1 can be used.

As such, the final estimation of autocorrelation at lag T is

calculated by equation (7).

With the correlation matrix, the PSD can then be estimated

by applying the MUSIC algorithm [23]. Formally, suppose

that Fk(ω) be the Fourier Transform of the k-th column in

the correlation matrix, where ω is the estimated frequency,

then the PSD measurement Sx(ω) is derived as follows:

Sx(ω) =
1

∑N
k=p+1 |Fk(ω)|2

, (9)
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where p is the double of the number of target signals, and N
is the dimension of the eigenvector of the correlation matrix.

IV. IMPLEMENTING ICHEMO ON MOBILE DEVICES

Coprime sampling essentially requires two sample se-

quences which are acquired at different sampling rates. To ful-

fill this requirement, there must be at least two ADCs operating

simultaneously but at different sampling rates. Unfortunately,

on most current mobile devices there is but one ADC, even if

some of them have multiple microphones. For those devices

that support USB On-The-Go (OTG) ADCs, the built-in ADC

is disable when OTG ADCs are operating. Another challenge

comes with the built-in Anti-Aliasing Filter (AAF). In order

to suppress inaudible noises in the input of the microphone,

mobile devices usually employ a AAF on the recorded analog

sound signal, before it further goes to the ADC [20]. This issue

further makes the implementation of iChemo no easy task.

To resolve these two challenges, we employ an inherent

feature of the sound recording system on COTS mobile

devices: the non-linearity feature.

A. Basics of the Non-linearity Feature

An ideal sound recording system is linear, that is, the

recorded signal is proportional to its input signal. Assume that

the input signal S(t) and corresponding output is Ŝ(t). The

ideal linear relationship between the input and output is:

Ŝ(t) = aS(t), (10)

where a is a measurable factor.

However, this linearity does not perfectly hold in the

real built-in sound recording system due to the imperfect

implementation, such as the capacity mismatch and finite

operational amplifier DC gains [24]. The actual output Ŝ′(t)
is not proportional to the input S(t). Theoretically, Ŝ′(t) is in

a form of an infinite power series:

Ŝ′(t) =

∞
∑

i=0

aiS(t)
i, (11)

where S(t) and Ŝ′(t) are the input and output signal respec-

tively, and ai is the factor of the ith order polynomial.

This non-linearity can be explicitly affecting the result when

the sound recording system is heavily loaded, i.e. taking

multiple signals as input. Suppose that the input S(t) is

composed with two components s1(t) and s2(t):

S(t) = s1(t) + s2(t), (12)

where s1(t) and s2(t) are sines signals:

s1(t) = A1sin(2πf1t+ φ1),

s2(t) = A2sin(2πf2t+ φ2).
(13)

Suppose that the highest non-linearity order is 2. According

to the equation (11), before processed by any low-pass filter,

the output Ŝ′(t) will be as follows:

Ŝ′(t) = a1S(t) + a2S(t)
2

= a1
[

A1sin(2πf1t+ φ1) +A2sin(2πf2t+ φ2)
]

+
a2
2

[

A2
1 +A2

2 −A2
1cos(4πf1t+ 2φ1)

−A2
2cos(4πf2t+ 2φ2)

]

− a2A1A2cos
[

2π(f1 + f2)t+ (φ1 + φ2)
]

+ a2A1A2cos
[

2π(f1 − f2)t+ (φ1 − φ2)
]

(14)

By applying the AAF, which generally suppresses signals at

frequency over half of the sample rate fs, the high-frequency

components will be removed from the output. Assume that

fs/4 < f1 < fs/2 and fs/4 < f2 < fs/2, after processed by

the AAF, the actual output becomes as follows:

Ŝ′(t) = a1S(t) + a2Sp(t),

Sp(t) = A1A2cos
[

2π(f1 − f2)t+ (φ1 − φ2)
]

.
(15)

Apparently the output is not proportional to the input. The

two components s1(t) and s2(t) “create” a signal Sp(t) at

frequency |f1 − f2|. We refer to Sp(t) the phantom signal,

and we call s2(t) the mask signal of s1(t).

B. Coprime Sampling With Non-linearity

The aforementioned phantom signal Sp(t) does not actually

exist. Yet it appears like an alias signal in the record, where

the original signal is at frequency f1 and the sample rate is f2.

Making use of this fact, it becomes possible to acquire two

coprime sample sequences by sampling for once.

Taking the two sine signals in equation (13) as an example.

Suppose that the sample rate is fs, and the input consists of

only s1(t). Then, we intentionally generate the mask signal

s2(t), and we choose f2 to be coprime with fs. As such, the

input is exactly identical to the one in equation (12).

According to the equation (15), the output Ŝ′(t) will be

a weighted sum of two components S(t) and Sp(t). Since

s2(t) is a known signal intentionally generated, it can be

easily removed from the output by conducting a subtraction. In

addition, since s1(t) is a high-frequency ultrasound signal, its

frequency f1 is expected to be higher than fs/2, meaning S(t)
will cause an alias signal S′(t). Suppose that |f1−f2| < fs/2,

the two components S′(t) and Sp(t) will become as follows:

S′(t) = A1sin[2π(fs − f1)t+ φ1 +Φ],

Sp(t) = A1A2sin
[

2π(f1 − f2)t+ (φ1 − φ2)− π/2
]

,

where Φ equals to either π or 0, depending on the relationship

between f1 and fs. Basically, Φ = 0 if f1 is [N,N+1/2] times

of fs, where N is a non-negative integer. Similarly, Φ = π if

f1 is [N + 1/2, N + 1] times of fs.

As such, we can get two signals from the output: one is

an alias signal S′(t), and the another is a phantom signal
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Fig. 6. An example of two sample sequences where there is a

latency of 2 periods of the target sound signal.

Sp(t). However, Sp(t) can not be simply taken as another

alias signal. The reason is that, the alias signal is composed

by the samples of the original signal, meaning that they are

naturally aligned in the time domain. However, the phantom

signal is basically the subtraction of the original signal and

the mask signal. That is, the samples composing the phantom

signal are only at the positions where the samples of the mask

signal are acquired. Since the mask signal may not naturally

align with the original signal, there is an unknown random

latency between their time-domain waveform. To use both the

phantom signal and the mask signal as paired alias signals, a

decent sample sequence alignment method is a must.

C. Approaching Ideal Sample Sequence Alignment

The original signal and the mask signal do not naturally

align with each other, causing the latency between the alias

signal and the phantom signal. Yet, an insight here is that, this

latency can be reduced on two conditions: (1) the latency is a

multiple of the period of target ultrasound, or (2) the latency

is a multiple of the target sampling interval. The soundness of

condition (1) is obvious. Since the ultrasound signal transits

on the same pattern during every period, it is obvious that

the delayed sampler will witness the same beginning sample

(although technically speaking the two samples are within

different periods) as the one without being delayed. Figure

6 shows an example, where the second sample sequences

x2(4n2) starts two period of target signal after the first sample

sequences x1(3n1). Since the latency is integer times of the

period of target signal, both sample sequences starts at the

same interval, meaning they shall witness the same time-

domain waveform of the signal.

The soundness of condition (2) comes as follows. Suppose

that the alias signal is x1(n1) and the phantom signal is

x2(n2). The target sample rate is fs, so the target unit sampling

interval is T = 1/fs. The coprime factors of x1(n1) and

x2(n2) are M and N , meaning that their sampling intervals

are MT and NT respectively. Now suppose that a latency

of ∆nT is between the two signals. That is, the phantom

signal starts at interval ∆nT instead of interval 0. Since this

latency is ∆n times of the target unit sampling interval T ,

when calculating the lag k using equation (5), the latency just

introduces a constant shift of −∆n to the value of k:

x(n)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

x
1
(3n

1
)

0 1 2 3 4 5 6

x
2
(4n

2
+∆n)

0 1 2 3

∆n = 6T

-3T = 3T - ∆n -T = 5T - ∆n

Fig. 7. A scenario where there is a lag of 6 unit intervals

between two coprime sample sequences.

k′ = Mn1 − (Nn2 +∆n) = Mn1 −Nn2 −∆n. (16)

Figure 7 shows an example of this situation. The unit

sampling interval is T , coprime factors are M = 3 and N = 4,

and the latency introduced to the second sampling process

is ∆n = 6T . When n1 = 1 and n2 = 0, the value of k
will become 3 − 6 = −3, meaning that the autocorrelation

Rxx(3) becomes Rxx(−3). Similarly, autocorrelations Rxx(k)
on every other feasible lags k will become Rxx(k − 6).

Therefore, combining both conditions (1) and (2), a latency

of arbitrary length can be approximated to just a couple times

of the period of the target sampling interval. Formally, suppose

that the frequency of the original signal is fc, and the target

sample rate is fs. By Nyquist-Shannon Sampling theorem, fc
shall be no longer than half of fs, meaning that the period of

the target signal 1/fc is at least twice longer than 1/fs. Let

∆T be the latency between the alias and phantom signal, it

can be approximated as follows:

∆T ≈
a

fc
+

b

fs
. (17)

where a is a non-negative integer and b is an arbitrary real

number. According to condition (1), the portion of a/fc is

ignorable, as such b shall be within range [0, fs
fc
]. For instance,

suppose that the target sample rate is 96 kHz and the frequency

of target ultrasound signal is 20 kHz, then b is within range

[0, 4.8]. This means that latency of arbitrary length ∆T can

be approximately eliminated by letting ∆n vary from 0 to 5.

Note that this method may not totally remove the latency, as

any latency of length less than 1/fs is not erasable. However,

suppose that the maximum latency is ρ, the impact of such

kind of latency is theoretically bounded as the proportion of

( 1
fcρ

)2, which is controllable [25].

D. Resolving Built-In AAF

As aforementioned, AAF is commonly employed in the

built-in sound recording system on mobile devices. The AAF

for analog signals is a physical circuit placed between the

microphone and the ADC. This AAF, unfortunately, can

neither be disabled or bypassed. Yet, an insight here is that,
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Fig. 8. Frequency response of a typical analog AAF
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Fig. 9. Frequency responses from 24 to 60 kHz

even if the AAF for analog signals is inevitable, its impact

to the ultrasound sensitivity is still controllable. Even though

the AAF is designed to only allow the sound below cutoff

frequency to pass, in reality they can not completely remove all

high-frequency ultrasounds from the record. In fact, there are

always a series of peaks in the frequency response, outside the

passband of the AAF. Figure 8 shows the frequency response

of a typical analog AAF. As is shown by the curve, although

the cutoff frequency is 0.5Fs, the signals at frequency around

0.54Fs and 0.75Fs are still not fully removed (yet the power

is reduced by about 33 dB).

If we can get the exact frequency response of the built-in

AAF on mobile devices, we can expect to get a strong enough

read of high-frequency ultrasound. Unfortunately, due to that

the native sample rate is limited to 48 kHz, it is not possible to

directly measure the frequency response over 24 kHz, the near-

ultrasound threshold. Therefore, we can only take the power

read of corresponding alias signal as the power response to

the high-frequency ultrasound.

Figure 9 illustrates the frequency response of some popular

mobile devices we have measured, including Apple iPhone

6s, iPhone 7 plus, Google Nexus 9 and Pixel XL, within the

ultrasound range of 24-60 kHz. Through this extensive tests,

we can still observe strong enough alias signals (at power over

-40 dB) on the two Apple smartphones, when feeding them

with the ultrasound at frequency over 28 kHz. This means

that we can directly get the necessary alias signal from these

two models. However, for the two Android models, they are

not able to get strong enough alias signal when the ultrasound

is over 29 kHz. Therefore, we need to use the non-linearity

feature to strengthen their read, i.e. apply additional speakers

phantom 
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coprime sampling

sample sequence 
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filtering
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STFTADC

micr
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Fig. 10. Overview of iChemo prototype on Android

to feed them with a mask signal at 48 kHz.

V. PROTOTYPE AND EVALUATIONS

In this section we introduce the evaluations on the perfor-

mance of iChemo on both Android and iOS platforms. On

Android we evaluate the prototype of iChemo, which is an

app deployed on the Google Nexus 9 tablet and Pixel XL

smartphone. As for the iOS platform, we collect sound records

from iPhone 6s and iPhone 7 plus smartphones, and then

process the sound records on a separate desktop for evaluation.

A. Prototype Overview

Although it is mostly ideal to prototype iChemo on both

platforms, the inherent sound signal processing on iOS plat-

form can not be disabled. On the other hand, Android supports

raw sound sampling since its version 7.0. Therefore, we im-

plement the iChemo prototype as a user-layer app on Android

7.1. Figure 10 illustrates an overview of iChemo prototype.

Firstly, iChemo takes the raw sample of sounds from the

built-in microphone, at a native sample rate of 48 kHz. iChemo

applies the unprocessed sound sampling procedure through

Android AudioTrack, which allows the sound samples to

bypass the pre-processing in the Hardware Abstraction Layer

(HAL). Then iChemo derives the spectrum of the raw samples

through the Short-Time Fourier Transform (STFT), in a time

interval of 10 ms. From the spectrum, iChemo extracts the

phantom signal and alias signal component by frequency-

domain filtering, and restore the signal through a typical

Inverse-STFT (ISTFT) process. After both signals acquired,

iChemo conducts sample sequence alignment described in

Section IV.C, and then derive the autocorrelation through the

coprime sampling algorithm. Based on the autocorrelation

information, iChemo applies the MUSIC algorithm to yield

the PSD measurement, as is described in Section III.B.

Since both the phantom signal and the alias signal are to be

obtained from the same spectrum, a subtle frequency-domain

filtering strategy is necessary. For instance, if the mask signal

is at 32 kHz, and the original signal is at a frequency within

the range of 24-40 kHz, then the frequency of alias signal will

vary from 24 down to 8 kHz. This is because the sample rate

is 48 kHz, and according to equation (2), it is equally the sum

of the frequencies of the original and alias signal. Similarly,

the frequency of the phantom signal will only be in a range of

0-8 kHz. Therefore, to filter out the phantom signal, we only
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Fig. 11. Absolute Frequency Deviation in PSD measurement
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Fig. 12. Relative Frequency Deviation in PSD measurement

take the spectrum between 0 Hz and 8 kHz, while for the alias

signal, we use the spectrum from 8 kHz to 24 kHz.

Note that most current mobile devices can emit a near-

ultrasound signal at 20 kHz. This means that iChemo can

individually work without any external mask signal being

emitted, yet the highest measurable frequency is then limited.

B. Absolute Frequency Deviation

Sound sensing apps that take advantage of Doppler Shifts

are sensitive to the absolute frequency deviation from the truth.

Therefore, we evaluate iChemo on this metric under three main

setups: (1) an external mask signal at 32 kHz is present, (2)

an external mask signal at 40 kHz is present, and (3) a mask

signal at 20 kHz, emitted by iChemo, is present.

With the native sample rate being 48 kHz, the first setup

forms a coprime factor pair where M = 3 and N = 2,

enabling iChemo to measure the ultrasounds at a frequency

up to 48 kHz. We use this setup for signals at frequencies

vary from 24 to 46 kHz. In the second setup, the chosen mask

signal frequency forms a coprime factor pair where M = 6 and

N = 5. With this setup, the highest measurable frequency is

120 kHz in theory. Unfortunately, the frequency of phantom

signal must not pass half of the frequency of mask signal;

otherwise the phantom signal will fall into the band reserved

for alias signal, which will interfere the outcome. As such, we

only use this setup to measure the PSD at frequencies up to

60 kHz. Similarly, in the third setup, even the coprime factor

pair is M = 12 and N = 5, only ultrasounds at frequencies

no higher than 30 kHz are measurable. Figure 11 presents

the evaluation results, where the maximal absolute frequency

deviation is 4 Hz under all the three setups.

C. Relative Frequency Deviation

For sound sensing apps that are built on ASK, a frequency

deviation in the PSD measurement is ignorable if it is within a

certain threshold. This threshold is mostly related to the target

spectrum bandwidth, which is determined by the frequency of

target signals.

To evaluate the performance of iChemo in such apps, we

assess a metric called relative deviation, which is the ratio

of the deviation to the target signal frequency. Figure 12

illustrates the Cumulative Distribution Function (CDF) of

the evaluated relative deviations, under the same experiment

setups as above. Among all the tests, the maximum relative

deviation is 13.07%, and the mean relative deviation is 3.37%.

This means the overall accuracy of PSD measurement is over

86.93%, and the mean accuracy is 96.63%.

VI. DISCUSSIONS

A. The Limit of AAF

As aforementioned, most current mobile devices employ an

analog AAF to remove ultrasound from the sound records. The

cutoff frequency of the AAF varies among different devices,

but most of them suppress any sound at frequency higher

than 24 kHz. Since this analog AAF can not be bypassed, it

becomes the major challenge of putting iChemo into practice.
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In this paper, we present a resolution to this issue, i.e.

producing a phantom signal of the target one by introducing a

proper mask signal. This method basically takes advantage

of the inherent non-linearity feature on mobile devices. It

however has two limitations: (1) this feature may not be

explicit in high-end ADC chips, and (2) there is the risk of

overlapping the phantom signal and the alias signal.

B. PSD measurement on Multiple Concurrent Sound Signals

iChemo requires that the target ultrasound signal is sparse,

meaning it occupies a very limited bandwidth around its

center frequency. This is the most basic case in sound sensing

apps that are built on ASK or Doppler Shift measurements.

However, iChemo still supports measuring the PSD of multiple

ultrasound signals, if these signals are all sparse and there are

adequate gaps among the bands they occupy. Recall that in

equation (9), the parameter p is the double of the number of

target sound signals in the PSD measurement. That is, if this

number is known to iChemo, it can still measure the PSD of

such sound signals by choosing a proper value of p.

C. Extension for Phase Measurement

PSD measurement basically reveals the frequency-domain

feature of ultrasound signals. Yet sometimes the time-domain

feature of signals is also necessary, and the need for the phase

measurement comes. The functionality of iChemo is poten-

tially able to be extended to support the phase measurement.

Specifically, given the phases of both the mask signal and the

phantom signal, the phase of the target signal can be derived

by summing them up, as is shown in the equation (15). As a

preliminary result, for ultrasounds at frequencies from 28 to

42 kHz, we find that iChemo is able to measure their phase

with a mean accuracy of 97%.

VII. CONCLUSION

In this paper, we introduced iChemo, a technology that

can enable the ability of COTS mobile devices to sense

high-frequency ultrasounds that is beyond their capacity to

fully capture. Particularly, we introduced how the non-linearity

feature can be used to realize coprime sampling algorithm on

mobile devices, with only one available built-in ADC. Also,

we tackle the two realistic challenges against the implementa-

tion of coprime sampling on COTS mobile devices, including

the sample sequence alignment and resolution of AAFs. By

evaluating iChemo on both Android and iOS devices, we

showed that it can sense the ultrasound at 60 kHz, which

is over twice of the current upper limit of 24 kHz. Our

future work includes extending iChemo to achieve phase shift

measurement on high-frequency ultrasounds.
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